Essential role of the G-domain in targeting of the protein import receptor atToc159 to the chloroplast outer membrane
نویسندگان
چکیده
Two homologous GTP-binding proteins, atToc33 and atToc159, control access of cytosolic precursor proteins to the chloroplast. atToc33 is a constitutive outer chloroplast membrane protein, whereas the precursor receptor atToc159 also exists in a soluble, cytosolic form. This suggests that atToc159 may be able to switch between a soluble and an integral membrane form. By transient expression of GFP fusion proteins, mutant analysis, and biochemical experimentation, we demonstrate that the GTP-binding domain regulates the targeting of cytosolic atToc159 to the chloroplast and mediates the switch between cytosolic and integral membrane forms. Mutant atToc159, unable to bind GTP, does not reinstate a green phenotype in an albino mutant (ppi2) lacking endogenous atToc159, remaining trapped in the cytosol. Thus, the function of atToc159 in chloroplast biogenesis is dependent on an intrinsic GTP-regulated switch that controls localization of the receptor to the chloroplast envelope.
منابع مشابه
Targeting of an abundant cytosolic form of the protein import receptor at Toc159 to the outer chloroplast membrane
Chloroplast biogenesis requires the large-scale import of cytosolically synthesized precursor proteins. A trimeric translocon (Toc complex) containing two homologous GTP-binding proteins (atToc33 and atToc159) and a channel protein (atToc75) facilitates protein translocation across the outer envelope membrane. The mechanisms governing function and assembly of the Toc complex are not yet underst...
متن کاملThe targeting of the atToc159 preprotein receptor to the chloroplast outer membrane is mediated by its GTPase domain and is regulated by GTP
The multimeric translocon at the outer envelope membrane of chloroplasts (Toc) initiates the recognition and import of nuclear-encoded preproteins into chloroplasts. Two Toc GTPases, Toc159 and Toc33/34, mediate preprotein recognition and regulate preprotein translocation. Although these two proteins account for the requirement of GTP hydrolysis for import, the functional significance of GTP bi...
متن کاملThe M domain of atToc159 plays an essential role in the import of proteins into chloroplasts and chloroplast biogenesis.
Toc159, a protein located in the outer envelope membrane and the cytosol, is an important component of the receptor complex for nuclear-encoded chloroplast proteins. We investigated the molecular mechanism of protein import into chloroplasts by atToc159 using the ppi2 mutant, which has a T-DNA insertion at atToc159, shows an albino phenotype, and does not survive beyond the seedling stage due t...
متن کاملProduction of viable seeds from the seedling lethal mutant ppi2-2 lacking the atToc159 chloroplast protein import receptor using plastic containers, and characterization of the homozygous mutant progeny
Biogenesis of chloroplasts is essential for plant growth and development. A number of homozygous mutants lacking a chloroplast protein exhibit an albino phenotype. In general, it is challenging to grow albino Arabidopsis plants on soil until they set seeds. Homozygous albino mutants are usually obtained as progenies of heterozygous parents. Here, we describe a method of recovering seeds from th...
متن کاملThe role of GTP binding and hydrolysis at the atToc159 preprotein receptor during protein import into chloroplasts
The majority of nucleus-encoded chloroplast proteins are targeted to the organelle by direct binding to two membrane-bound GTPase receptors, Toc34 and Toc159. The GTPase activities of the receptors are implicated in two key import activities, preprotein binding and driving membrane translocation, but their precise functions have not been defined. We use a combination of in vivo and in vitro app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 159 شماره
صفحات -
تاریخ انتشار 2002